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Abstract In this paper, we study the counterparty risk on a credit default swap (CDS) and the
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events, whose arrivals are governed by a multivariate regime-switching shot noise process. Based on
some expressions for the joint Laplace transform of the regime-switching shot noise processes, we
give explicit formulas for the spread of the CDS contract with and without counterparty risk and the
spread of the first-to-default basket swap on the three underlyings.

Key words: credit default swap, counterparty risk, common shock, multivariate regime-switching
shot noise process, first-to-default basket swap

AMS2000 classification: 91B25;60J27;60G55.

1. Introduction

Counterparty credit risk is the risk that the counterparty to a financial contract will default prior
to the expiration of the contract and will not make all the payments required by the contract. Once
two counterparties enter into a financial transaction, they should take credit risk against each other.
To value counterparty credit risk, the most important task is to model the default dependence among
the counterparties. Credit default swaps are the most widely traded form of credit derivative. A
credit default swap (CDS) is a financial swap agreement between the buyer of the default protection
on a reference risky entity and the seller of the default protection. The protection seller receives fixed
periodic payments (CDS premium) from the protection buyer, in return for compensating the buyer’s
losses on the reference entity when a credit event occurs. This paper focuses on valuing a single-name
CDS with and without counterparty risk as well as a first-to-default CDS on three underlyings.

The reduced-form approach is one of the most popular methods to model the default correlation.
Reduced-form models, introduced by Duffie and Singleton [12], Jarrow and Turnbull [20], and others,
focus directly on the modeling of the default probability. This methodology does not intend to
explain the default of a firm by means of an economic construction. Instead, the time of default is
defined as the first jump time of a point process. There exist four major approaches to introduce
default correlation within the reduced-form framework: the conditionally independent approach, the
copula approach, the default contagion models, and the common shock models. In the conditionally
independent default models, one may set the default intensities of the firms in the portfolio to be
driven by a common set of macro-economic factors. Therefore, conditional on the realization of the
macro-economic state variables, the default times are mutually independent; see, for example, Duffie
and Gârleanu [11] and Graziano and Rogers [9]. In the copula models, the dependence structure is
linked through a copula function; see, for example, Schonbucher and Schubert [24] and Hull and White
[19]. Default contagion is another approach to model the default correlation. The contagion models
study the direct interaction of firms in which the default probability of one firm may change upon
defaults of some other firms in the portfolio; see, for example, Davis and Lo [8] and Ma and Yun [23].
The common shock models are based on the idea that a firm’s default is driven by exogenous events,
for example, policy events, natural catastrophes events, etc. Therefore, simultaneous defaults may
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occur under the common shock models; see, for example, Lindskog and McNeil [22], Giesecke [16],
Brigo et al. [3], and Bielecki et al. [1].

This paper focuses on a model with common shock. In the framework of common shock models,
Lindskog and McNeil [22] and Giesecke [16] both assume the shock events arrive as independent
Poisson processes. In this paper, we extend their work to the case that the arrival intensities of the
external shock events are modeled by some conditionally independent Cox processes. Since the default
intensities of the firms can be expressed as some linear combination of the arrival intensities of the shock
events under some suitable assumptions within the common shock framework, the default dependence
in our model is not only due to common shock, but also the dependence among the arrival intensities.
In the literature, the shot noise processes are good tools for describing the arrival intensities as they
allow for explicit solutions to many important quantities in derivative pricing. For example, Gaspar
and Schmidt [15] consider a multivariate default model driven by the shot noise processes and show
that the shot noise processes can describe historical data very well and give a better fit in calibration
than the affine jump-diffusion models proposed by Duffie and Gârleanu [11]. Also, Cox and Isham
[5] and Dassios and Jang [7] show that the shot noise processes can be used to measure the impact
of major events on the intensities. However, most existing works on the shot noise models assume
that the jumps are driven by a compound Poisson process. Intuitively, the jumps should be related
to the macro-economic conditions since we have witnessed that recent global financial crises do have
significant impact on international financial markets, in particular on the values of credit derivatives.
In fact, default risk is influenced very much by business cycles or macro-economy. For instance, default
risk typically declines during economic expansion because strong earnings keep overall defaults rates
low; and it increases during economic recession because weak earnings make it more difficult to repay
loans or bond payments. In view of these, there is a practical need to develop some credit risk models,
which can take into account changes in market regimes.

Markov regime-switching models have been used by a lot of research in different branches of modern
financial economics to capture changes in market regimes. For example, see Buffington and Elliott [4],
Yuen and Yang [26], Shen and Siu [25], Dong et al. [10], and Elliott and Siu [13]. Regime switches
are often interpreted as structural changes in macro-economic conditions and in different stages of
business cycles. The advantages of using Markov regime-switching models have been empirically
verified in various financial markets. For example, in the stock market, by using monthly returns
data from the Standard and Poor’s 500 and the Toronto Stock Exchange 300 indices, Hardy [18] finds
that the regime-switching lognormal model fits to the monthly returns data much better than other
econometric models such as the independent lognormal model and the ARCH type models. In the
credit market, by an empirical analysis of the corporate bond market over the course of the last 150
years, Giesecke et al. [17] point out that there exist three regimes, associated with high, middle, and
low default risk.

Motivated by Gaspar and Schmidt [15], Buffington and Elliott [4], and Giesecke et al. [17], we
propose a multivariate regime-switching shot noise process to model the arrival intensities of the
shock events. This paper aims at providing a flexible and tractable model for correlated defaults
which take into account the changes in market regimes or environments due to financial crises. The
contribution of this article is to provide a correlated default model with regime-switching intensities,
in which the default intensities of all parties can change simultaneously over time depending on the
state of the underlying Markov chain. Furthermore, the model leads to analytic formulas for the CDS
spreads with and without counterparty risk. The rest of the paper is organized as follows. In section
2, we introduce a common shock model, in which the shock events arrive as some dependent regime-
switching shot noise processes. We also present some preliminary results in this section. Section 3
derives the joint Laplace transform of the shot noise processes. Based on the joint Laplace transform,
we obtain the joint survival distributions. Section 4 incorporates the common shock model into the
Markov copula framework, which was considered by Crépy et al. [6] and Bielecki et al. [1]. Section 5
gives the closed-form formulas for the CDS spreads with and without counterparty risk and the spread
of the first-to-default basket swap on three underlyings. Section 6 presents some numerical results.
Finally, Section 7 concludes the paper.
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2. Default dependence and some preliminary results

In this section, we model the dependence structure within the common shock framework under a
Markov environment. Consider a continuous-time model with a finite time horizon [0, T ] with T <∞.
Let {Ω,ℑ, {ℑt}0≤t≤T , P} be a filtered complete probability space, where P is the risk neutral measure
and {ℑt}0≤t≤T is a filtration satisfying the usual conditions of right continuity and completeness.
Throughout the paper, it is assumed that all random variables are well defined on this probability
space and ℑT−measurable.

Denote by D(t1, t2) the stochastic factor giving the discounted value of one at time t1 due at
time t2. Consider a CDS contract with notional value of one, continuous spread rate payments, and
maturity time T. Indices 0, 1, 2 refer to quantities related to the investor, the reference entity, and
the counterparty. Also, denote by τ0, τ1 and τ2 be the default times of the investor, the reference
entity and the counterparty, respectively; and denote by R1 the recovery of the reference entity which
is supposed to be a constant. In this paper, it is assumed that all the cash flows and prices are
considered from the perspective of the investor.

In order to derive an explicit expression for the fair spread of a CDS contract, we construct a default
dependence structure in the reduced-form framework. Motivated by Lindskog and McNeil [22], we
assume that there are m event types called factor names, which can generate events potentially causing
joint defaults. We further assume that there exists a process {Xt}t≥0 which governs the dynamics
of all arrivals of the m types of shock events and the interest rate. Here, the process {Xt}t≥0 is a
homogeneous Markov chain with generator Q = (qij) describing the macro-economic conditions. The
state space of X can be taken to be, without loss of generality, the set of unit vectors {e1, e2, · · · , eN},
where ei = (0, · · · , 0, 1, 0, · · · , 0)∗ ∈ RN with the symbol ∗ denoting the transpose of a vector or a
matrix. Denote the corresponding filtration by ℑXt = σ(Xu, 0 ≤ u ≤ t). Elliott et al. [14] provide the
following semi-martingale decomposition for Xt:

dXt = Q∗Xtdt+ dMt, (2.1)

where Mt is an ℑXt -martingale.

Let ⟨., .⟩ denote a scalar product in RN , that is, for any x,y ∈ RN , ⟨x,y⟩ =
∑N
i=1 xiyi. Assume

that the discount factor is given by D(0, t) = exp{−
∫ t
0
rsds}, where the interest rate rt has the form

rt = r0 +

∫ t

0

h0(t− s)dJ0
s
.
= r0 + L0

t . (2.2)

Here, r0 = ⟨r, X0⟩, where r = (r1, r2, · · · , rN )∗ ∈ RN with ri > 0, for each i = 1, 2, · · · , N ; h0(.) is

an R+-valued deterministic function; and J0
t =

∑M0(t)
i=1 Y 0

j is a regime-switching compound Poisson

process with M0(t) being a regime-switching Poisson process. Write the intensity of M0(t) as µ0(s) =
⟨µ0, Xs⟩, for a positive vector µ0 = (µ1

0, · · · , µN0 )∗. That is, if Xs = ej for all s in a small interval

(t, t+h], then M0(t+h)−M0(t) has a Poisson distribution with parameter µj0. Assume that, given the
path of the Markov chain X, {Y 0

1 , Y
0
2 , · · ·} is a sequence of independent and identically distributed with

conditional density f0t concentrated on (0,∞) and independent of M0(t), where f0t (.) = ⟨f0(.), Xt⟩
for a vector f0(.) = (f01(.), · · · , f0N (.))∗. Furthermore, it is assumed that M0(t) does not jump at the
jump times of Markov chain X. Since jumps of interest rate are possibly due to some extraordinary
market events, such as market crashes and interventions of central banks or monetary authorities, the
regime-switching shot noise process can be used to describe the impact of major market events on
the movement of interest rate. If there is no regime-switching, the process L0

t is called a shot noise
process, which was studied in Gaspar and Schmidt [15]. Here, we extend the study of shot noise
process to the case with regime switching.

For the arrivals of shock events, we assume that the m types of shock events arrive as Cox processes
{N1(t), t ≥ 0}, · · · , {Nm(t), t ≥ 0} with stochastic intensities λ1t , · · · , λmt generating a filtration ℑλ

t =

ℑλ1

t ∨ ℑλ2

t ∨ · · · ∨ ℑλm

t , with ℑλi

t = σ(λis, 0 ≤ s ≤ t). Furthermore, given ℑλ
t , it is assumed that
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{N1(t), t ≥ 0}, · · · , {Nm(t), t ≥ 0} are mutually independent. For each i = 1, · · · ,m, the intensity λit
is given by

λit = λi0 +

∫ t

0

hi(t− u)dJ iu
.
= λi0 + Lit. (2.3)

Here, λi0 = ⟨λi, X0⟩, where λi = (λi1, λi2, · · · , λiN )∗ ∈ RN with λij > 0 for i = 0, 1, 2, and j =

1, · · · , N ; hi(.) is an R+-valued deterministic function; and J it =
∑Mi(t)+M0(t)
j=1 Y ij is a regime-switching

compound Poisson process, where M0(t) is given in (2.2), and M i(t) is also a regime-switching Poisson
process with intensity µi(s) = ⟨µi, Xs⟩ for a positive vector µi = (µ1

i , · · · , µNi )∗; Y in is the size of the nth
jump that is independent of M i(t) given the state of the Markov chain. Given ℑXt , it is assumed that
M0(t),M1(t) · · · ,Mm(t) are mutually independent, and that {Y 0

j , j = 1, 2, · · ·}, · · · , {Y mj , j = 1, 2, · · ·}
are mutually independent and independent of M0(t), · · · ,Mm(t). Furthermore, given the path of the
Markov chain X, we assume that for each i = 1, 2, · · · ,m, the jump sizes Y ij , j = 1, 2, · · · have

a common conditional density f it concentrated on (0,∞), where f it (.) = ⟨f i(.), Xt⟩, with f i(.) =
(f i1(.), · · · , f iN (.))∗. Note that the stochastic interest rate and the intensities λ1t , · · · , λmt given by
(2.3) are driven by a multivariate regime-switching shot noise process with common jumps. Intuitively,
extraordinary market events which trigger jumps in the interest rate may also trigger simultaneous
jumps in the arrival intensities of the shock events. Therefore, all the intensities are influenced by
M0(t) which counts the number of the arrivals of extraordinary market events. It follows from (2.3)
that the intensity of each group is also influenced by some factors of its group. In particular, M i(t)
counts the number of the factor events occurring in group i.

Remark 2.1. For each i = 0, 1, · · · ,m, if hi(t) = 1, then Lit becomes a regime-switching compound
Poisson process; if hi(t) = exp{−ait}, where ai > 0 is a constant, then Lit is a mean-reverting regime-
switching Markov process, and it solves the stochastic differential equation

dLit = −aiLitdt+ dJ it , Li0 = 0. (2.4)

We now construct a default dependence structure by the thinning of the Cox processes Ne(t), e =
1, · · · ,m. Define the collection

S = {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.

In order to use the Cox framework to specify the random default times, we define the counting
processes Ni(t), i = 0, 1, 2, and Ns(t), s ∈ S, which count shocks in the interval (0, t] resulting in
default of name i and simultaneous defaults of the names in s, respectively. By definition,

Ni(t) =
∑

s∈S,i∈s
Ns(t).

For k = 1, · · · ,m and i = 0, 1, 2, let pki(t) be the conditional probability of finding the ith credit
name defaulted knowing that factor name k has generated an event during (t, t + dt). Suppose that
each event of kth type occurring at time t has probability pki(t) of generating a default of firm i
only, and that defaults of the credit names are conditionally independent given that an event of a
certain type has arrived. These imply that the conditional probability density that only the names in
s ∈ S defaulting during (t, t + dt) is

∑m
k=1 λ

k
t

∏
i∈s pki(t)

∏
j /∈s pkj(t), where pkj(t) = 1 − pkj(t). For

simplicity, we further assume that pkj(t) ≡ pkj for k = 1, · · · ,m and j = 0, 1, 2. Then, it follows from
the above assumptions that the processes {Ns(t), t ≥ 0}, s ∈ S, are independent given ℑλ

t , and that
the intensity of the counting process Ns(t) is given by

qs(t) =
∑m

k=1
λkt

∏
i∈s

pki
∏

j /∈s
pkj .

It is easy to check that ∑
s∈S

qs(t) =
m∑
k=1

λkt (1 −
2∏
l=0

pkl),
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and that the intensity of Ni(t) has the form

qi(t) =
∑

s∈S,i∈s
qs(t) =

m∑
k=1

λkt pki.

Remark 2.2. As was pointed out in Lindskog and McNeil [21], the process Nj(t) represents the
number of defaults of name j in the interval (0, t]. Since CDS contracts end at the time of the first
default, we focus on the first jump of the process Nj(t).

Denote the filtration by ℑLt = ℑL0

t ∨ℑL1

t ∨· · ·∨ℑLm

t , where ℑLi

t = σ(Liu : 0 ≤ u ≤ t), i = 0, 1, · · · ,m.
With Ni(t), we define the default time of name i as

τi = inf{t ≥ 0 : Ni(t) = 1}, i = 0, 1, 2.

Therefore, we have

P (τi > t|ℑLt ∨ ℑXt ) = P (Ni(t) = 0|ℑLt ∨ ℑXt ) = e
−
∫ t

0
qi(u)du.

Define the default processes as

Hi
t = 1{τi≤t}, i = 0, 1, 2,

and denote the filtration by
ℑt = ℑXt ∨ ℑLt ∨ ℑ0

t ∨ ℑ1
t ∨ ℑ2

t ,

where ℑit = σ(Hi
u : 0 ≤ u ≤ t), i = 0, 1, 2.

In order to derive the joint survival distribution, we need to use the first jump time of the counting
process Ns(t) given by

τs = inf{t ≥ 0 : Ns(t) = 1}, s ∈ S.

For example, if s = {1, 2}, then Ns(t) counts shocks which cause simultaneous defaults of names 1 and
2, but not of name 0. Since {Ns(t), t ≥ 0}, for s ∈ S, are conditionally independent Cox processes,
the stopping times τs, for s ∈ S, are also conditionally independent. Furthermore, the conditional
and unconditional distributions for τs can be expressed as

P (τs > t|ℑLt ∨ ℑXt ) = P (Ns(t) = 0|ℑLt ∨ ℑXt ) = e
−
∫ t

0
qs(u)du. (2.5)

Then, it follows from the relationship between Ni(t) and Ns(t) that the default time τi can be rewritten
as

τi = inf{t ≥ 0 :
∑

s∈S:i∈s
Ns(t) = 1} = min

s∈S:i∈s
τs, i = 0, 1, 2. (2.6)

The next proposition gives the conditional joint survival probability of the three firms.

Proposition 2.1. For ti ≥ 0, i = 0, 1, 2, we have

P (τ0 > t0, τ1 > t1, τ2 > t2|ℑLt(2) ∨ ℑXt(2))

= e

−
∫ t(0)

0

m∑
k=1

λk
u(1−

2∏
l=0

pkl)du−
∫ t(1)

t(0)

m∑
k=1

λk
u(1−

(2)∏
l=(1)

pkl)du−
∫ t(2)

t(1)

m∑
k=1

λk
upk(2)du

, (2.7)

where t(i)
′
s are ordered times with 0 ≤ t(0) ≤ t(1) ≤ t(2) and (i) refers to the credit name associated

with the (i+ 1)th ordered time.
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Proof. Using (2.6), we obtain

P (τ0 > t0, τ1 > t1, τ2 > t2|ℑLt(2) ∨ ℑXt(2))

= P (τ(0) > t(0), τ(1) > t(1), τ(2) > t(2)|ℑLt(2) ∨ ℑXt(2))

= P (τ{(0)} > t(0), τ{(1)} > t(1), τ{(0),(1)} > t(1), min
(2)∈s

τs > t(2)|ℑLt(2) ∨ ℑXt(2))

= P (τ{(0)} > t(0)|ℑLt(2) ∨ ℑXt(2))
∏

s={(1)},{(0,1)}

P (τs > t(1)|ℑLt(2) ∨ ℑXt(2))

×
∏

s∈S,(2)∈s

P (τs > t(2)|ℑLt(2) ∨ ℑXt(2)),

where the last equality follows from the conditional independence of τs, s ∈ S. Then, substituting
(2.5) into the above equality gives the result.

The next two results are very useful for deriving the spread of CDS.

Lemma 2.1. For any ℑXT ∨ ℑLT−measurable random variable Y and any u ≥ t ≥ 0, we have

E
[
1{τi>u}Y |ℑt

]
= 1{τi>t}E

[
Y e

−
∫ u

t
qi(v)dv|ℑLt ∨ ℑXt

]
, i = 0, 1, 2;

for any s ∈ S,

E
[
1{τs>u}Y |ℑt

]
= 1{τs>t}E

[
Y e

−
∫ u

t
qs(v)dv|ℑLt ∨ ℑXt

]
;

and

E

[
1{min

s∈S
τs>u}Y |ℑt

]
= 1{min

s∈S
τs>t}E

Y e−
∫ u

t

m∑
k=1

λk
v(1−

2∏
l=0

pkl)dv

|ℑLt ∨ ℑXt

 .

Proof. See Corollary 5.1.1 in Bielecki and Rutkowski [2].

Lemma 2.2. Let τ = min
s∈S

τs. Let Z be a bounded ℑXT ∨ ℑLT−predictable process. Then, for any

0 ≤ t <∞ and s′ ∈ S,

E
[
Zτs′ 1{τ=τs′ ,t<τs′≤s}|ℑt

]
= 1{τ>t}E

∫ s

t

Zuqs′(u)e
−
∫ u

t

m∑
k=1

λk
v(1−

2∏
l=0

pkl)dv

du|ℑLt ∨ ℑXt

 .

Proof. From Lemma 2.1, we have

E
[
Zτs′ 1{τ=τs′ ,t<τs′≤s}|ℑt

]
= 1{τ>t}e

∫ t

0

m∑
k=1

λk
u(1−

2∏
l=0

pkl)du

E
[
Zτs′ 1{τ=τs′ ,t<τs′≤s}|ℑ

L
t ∨ ℑXt

]
. (2.8)

So, it remains to derive the expression for the conditional expectation in the above equality. We first
assume Z is a stepwise ℑXT ∨ℑLT−predictable process, that is, for t < u ≤ s, Zu =

∑n
i=0 Zti1{ti<u≤ti+1},

where t0 = t < t1 < · · · < tn+1 = s, and Zti is ℑLti∨ℑ
X
ti −measurable random variable for i = 0, 1, · · · , n.

Then,

E
[
Zτs′ 1{τ=τs′ ,t<τs′≤s}|ℑ

L
t ∨ ℑXt

]
6



=
n∑
i=0

E
[
ZtiE

[
1{ti<τs′≤ti+1,τ=τs′}|ℑ

L
ti+1

∨ ℑXti+1

]
|ℑLt ∨ ℑXt

]

=

n∑
i=0

E

Zti ∫ ti+1

ti

qs′(u)e
−
∫ u

0

m∑
k=1

λk
v(1−

2∏
l=0

pkl)dv

du|ℑLt ∨ ℑXt

 , (2.9)

where the second equality holds since τs, s ∈ S, are conditionally independent. Define

F (t) =

∫ t

0

qs′(u)e
−
∫ u

0

m∑
k=1

λk
v(1−

2∏
l=0

pkl)dv

du.

Then, (2.9) can be rewritten as

E
[
Zτs′ 1{τ=τs′ ,t<τs′≤s}|ℑ

L
t ∨ ℑXt

]
=

n∑
i=0

E
[
Zti(F (ti+1) − F (ti))|ℑLt ∨ ℑXt

]
=

n∑
i=0

E

[∫ ti+1

ti

ZudF (u)|ℑLt ∨ ℑXt ] = E[

∫ s

t

ZudF (u)|ℑLt ∨ ℑXt
]
. (2.10)

For any Z, we can use a suitable sequence of bounded, stepwise, ℑXT ∨ ℑLT−predictable processes to
approximate Z. So, (2.10) holds for any bounded ℑXT ∨ℑLT−predictable process Z. Finally, substituting
(2.10) into (2.8) yields the result.

3. Laplace transforms and survival distributions

In this section, we give the joint Laplace transform of the regime-switching shot noise processes and
the integrated regime-switching shot noise processes under the assumption that Lit is a mean-reverting
regime-switching process defined in (2.4) for each i = 0, 1, · · · ,m. With the joint Laplace transform,
we can obtain explicit formulas for the joint survival distributions.

For ci ≥ 0, di ≥ 0, and i = 0, 1, · · · ,m, let

V (t, T ) = E

e−
∫ T

t

m∑
i=0

ciLi
sds−

m∑
i=0

diLi
T

|ℑLt ∨ ℑXt

 ,
where Lit, i = 0, 1, · · · ,m, are given in (2.4). Note that Lit > 0 for i = 0, 1, · · · ,m. Consequently,
V (t, T ) is a bounded function. Since (Xt, L

0
t , L

1
t · · · , Lmt )∗ is an (m+ 2)−dimensional Markov process

with respect to ℑLt ∨ ℑXt , we have

V (t, T ) = E

e−
∫ T

t

m∑
i=0

ciLi
sds−

m∑
i=0

diLi
T

|Lit, i = 0, 1, · · · ,m,Xt


=: θ(t, T, L0

t , L
1
t , · · · , Lmt , Xt).

Write
θi = θ(t, T, L0

t , L
1
t , · · · , Lmt , ei), i = 1, 2, · · · , N,

θ = (θ1, θ2, · · · , θN )∗ ∈ RN .

The following result gives the explicit expression for θ(t, T, L0
t , L

1
t , · · · , Lmt , Xt).

Theorem 3.1. Let c = (c0, c1, · · · , cm)∗ ∈ Rm+1 and d = (d0, d1, · · · , dm)∗ ∈ Rm+1 with ci ≥
0, di ≥ 0 for each i = 0, 1, · · · ,m. Then, we have

V (t, T ) = e
−

m∑
i=0

(ciξi(t,T )+die−ai(T−t))Li
t

⟨Ψ1(c,d, t, T ), Xt⟩, (3.1)
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where
ξi(t, T ) = (1 − e−a

i(T−t))/ai, i = 0, 1, · · · ,m,
and the N−dimensional vector Ψ1(c,d, t, T ) solves

∂Ψ1

∂t
+ (Q+ Ft(c,d)))Ψ1(c,d, t, T ) = 0, Ψ1(c,d, T, T ) = 1, (3.2)

with 1 = (1, 1, · · · , 1)∗ ∈ RN, and Fs being an N -dimensional vector with the jth component given by

F js (c,d) =

m∑
i=1

µji (g
ij
s (ci, di) − 1) + µj0(

m∏
i=0

gijs (ci, di) − 1),

and

gijs (ci, di) =

∫ ∞

0

e−(ciξi(s,T )+die−ai(T−s))xf ij(x)dx, i = 0, 1, · · · ,m, j = 1, · · · , N.

Proof. We use the martingale approach to derive (3.1). Consider the function

V (t, T ) = Utθ(t, T, L
0
t , · · · , Lmt , Xt),

where Ut = exp(−
∫ t
0

m∑
i=0

ciLisds). Applying Itô’s differentiation rule to V (t, T ) yields

dV (t, T ) = Ut(
∂

∂t
−

m∑
i=0

aiLit
∂

∂Li
−

m∑
i=0

ciLit)θ(t, T, L
0
t , L

1
t , · · · , Lmt , Xt)dt

+ Ut

m∑
i=1

((θ(t, T, L0
t , · · · , Lit, · · · , Lmt , Xt) − θ(t, T, L0

t , · · · ,  L
i
t− , · · · , Lmt , Xt))dM

i
t

+ Ut(θ(t, T, L
0
t , · · · , Lit, · · · , Lmt , Xt) − θ(t, T, L0

t− , · · · , L
i
t− , · · · , L

m
t− , Xt))dM

0
t

+ Ut⟨θ, Q∗Xt⟩dt+ Ut⟨θ, dMt⟩.

Note that V (t, T ) is a bounded ℑLt ∨ ℑXt −martingale. Consequently, we have

(
∂

∂t
−

m∑
i=0

aiLi
∂

∂Li
−

m∑
i=0

ciLi)θ(t, T, L0, · · · , Lm, x) + ⟨θ, Q∗x⟩

+
m∑
i=1

⟨µi, x⟩E
[
(θ(t, T, L0, L1, · · · , Li + Y i, · · · , Lm, x) − θ(t, T, L0, L1, · · · , Li, · · · , Lm, x))

]
+⟨µ0, x⟩E

[
(θ(t, T, L0 + Y 0, · · · , Lm + Y m, x) − θ(t, T, L0, · · · , Lm, x))

]
= 0. (3.3)

Due to the affine structure of Lit for i = 0, 1, · · · ,m, we try the solution

θ(t, T, L0, · · · , Lm, x) = e

m∑
i=0

Bi(t,T )Li+C(t,T,x)

, (3.4)

where the terminal conditions are given by

Bi(T, T ) = −di, C(T, T, x) = 0.

Write C(t, T ) = (eC(t,T,e1), · · · , eC(t,T,eN ))∗ ∈ RN. Substituting the solution to θ given by (3.4) into
(3.3) gives

⟨C(t, T ), x⟩
m∑
i=0

Li(
∂Bi
∂t

− aiBi(t, T ) − ci) + ⟨∂C(t, T )

∂t
, x⟩

+ ⟨C(t, T ), Q∗x⟩ + ⟨C(t, T ), x⟩
m∑
i=1

⟨µi, x⟩
∫ ∞

0

(eBi(t,T )y − 1)⟨f i(y), x⟩dy

+ ⟨C(t, T ), x⟩⟨µ0, x⟩(
m∏
i=0

∫ ∞

0

eBi(t,T )y⟨f i(y), x⟩dy − 1) = 0. (3.5)
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Since (3.5) holds for all Li and x, we have

∂Bi
∂t

− aiBi(t, T ) − ci = 0, Bi(T, T ) = −di, i = 0, 1, · · · ,m,

and

∂C

∂t
+ (Q+ diag(Ft))C(t, T ) = 0,C(T, T ) = 1,

where Ft is an N -dimensional vector with the jth component given by

F
j

t =
m∑
i=1

µji

∫ ∞

0

(eBi(t,T )y − 1)f ij(y)dy + µj0(
m∏
i=0

∫ ∞

0

eBi(t,T )yf ij(y)dy − 1).

By solving the above equations, we complete the proof of (3.1).

Corollary 3.1. Let c = (c0, c1, · · · , cm)∗ ∈ Rm+1 and d = (d0, d1, · · · , dm)∗ ∈ Rm+1 with ci ≥
0, di > 0, for each i = 0, 1, · · · ,m. Then, for k = 0, 1, · · · ,m,

E

LkT e−
∫ T

t

m∑
i=0

ciLi
sds−

m∑
i=0

diLi
T

|ℑLt ∨ ℑXt


= e

−
m∑

i=0

(ciξi(t,T )+die−ai(T−t))Li
t

⟨e−a
k(T−t)LktΨ1(c,d, t, T ) − Ψk

2(c,d, t, T ), Xt⟩, (3.6)

where ξi(t, T ) is given in Theorem 3.1, and

Ψk
2(c,d, t, T ) =

∂Ψ1(c,d, t, T )

∂dk
. (3.7)

Proof. Differentiating both sides of (3.1) with respect to dk gives (3.6).

Corollary 3.2. For j ∈ {0, 1, 2}, let ĉ1 = (ĉ01, · · · , ĉm1 )∗ with ĉ01 = 0 and ĉi1 = pij , i = 1, 2, · · · ,m.
Then, the survival distribution for name j is given by

P (τj > t) = e
−

m∑
i=1

pijλ
i
0t

⟨Ψ1(ĉ1,0, 0, t), X0⟩, t > 0.

For i, j ∈ {0, 1, 2}, t > 0, let ĉ2 = (ĉ02, · · · , ĉm2 )∗ with ĉ02 = 0 and ĉk2 = 1− pkipkj , k = 1, 2, · · · ,m. Then,
we have

P (τi > t, τj > t) = e
−

m∑
k=1

ĉk2λ
k
0 t

⟨Ψ1(ĉ2,0, 0, t), X0⟩, t > 0.

Also, let ĉ3 = (ĉ03, · · · , ĉm3 )∗ with ĉ03 = 0 and ĉi3 = 1 −
2∏
l=0

pil, i = 1, 2, · · · ,m. Then, we have

P (τ0 > t, τ1 > t, τ2 > t) = e
−

m∑
k=1

ĉk3λ
k
0 t

⟨Ψ1(ĉ3,0, 0, t), X0⟩,

where Ψ1(ĉi,0, 0, t) = limd0,···,dm→0 Ψ1(ĉi,d, 0, t) with Ψ1(ĉi,d, 0, t) determined by (3.2).

Proof. Since

P (τj > t) = E

e−
∫ t

0

m∑
k=1

λk
spkjds

 = e
−

m∑
k=1

λk
0pkjt

E

e−
∫ t

0

m∑
k=1

Lk
spkjds

 ,
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P (τi > t, τj > t) = E

e−
∫ t

0

m∑
k=1

λk
s (1−pkipkj)ds

 = e
−

m∑
k=1

λk
0 (1−pkipkj)t

E

e−
∫ t

0

m∑
k=1

Lk
s (1−pkipkj)ds

 ,

P (τ0 > t, τ1 > t, τ2 > t) = E

e−
∫ t

0

m∑
k=1

λk
s (1−

2∏
l=0

pkl)ds

 = e
−

m∑
k=1

λk
0 (1−

2∏
l=0

pkl)t

E

e−
∫ t

0

m∑
k=1

Lk
s (1−

2∏
l=0

pkl)ds

 ,
an application of Theorem 3.1 yields the results.

4. Markov copula model

Within the framework of Markov copula, the common shock model discussed in Section 2 was
considered by Crépy et al. [6] and Bielecki et al. [1]. In this section, we present the corresponding
Markov copula model.

Define the default process as

Ht = (H0
t , H

1
t ,H

2
t ) ∈ {0, 1}3,

where Hi
t = 1{τi≤t}. Then, H can be visualized as a finite state Markov chain and the state space S

of H contains the following eight states:

state 1: (0,0,0), state 2: (1,0,0), state 3: (0,1,0), state 4: (0,0,1),

state 5: (1,1,0), state 6: (1,0,1), state 7: (0,1,1), state 8: (1,1,1).

Let ψ = (X,L0
t , L

1
t , · · · , Lmt )0<t≤T be an (m+2)-dimensional stochastic process. Based on the default

dependence constructed in Section 2, we now give the infinitesimal generator Λ[ψ](t) = (∧ij(t|ψ))8×8

for H given the path of ψ. Write state i as k = (k0, k1, k2) and state j as l = (l0, l1, l2). Note that
ki ∈ {0, 1} and li ∈ {0, 1}, for i = 0, 1, 2. For notational convenience, we define

S1 = {i ∈ {0, 1, 2} : ki = 1, li = 0},

S2 = {i ∈ {0, 1, 2} : ki = 0, li = 0},

S3 = {i ∈ {0, 1, 2} : ki = 0, li = 1}.

Hence, for k ̸= l, if S1 is nonempty, then the transition intensity from state i to state j is

∧ij(t|ψ) = 0.

If S1 is empty, then

∧ij(t|ψ) =
m∑
k=1

λkt
∏
i∈S2

pki
∏
j∈S3

pkj .

For k = l, we have

∧ii(t|ψ) = −
8∑

j=1,j ̸=i

∧ij(t|ψ).

For example, if k = (0, 0, 1), l = (1, 1, 1), then ∧48(t|ψ) =
∑m
i=1 λ

i
tpi1pi2.

By using the forward Kolmogorov equation, the conditional transition probability matrix P (t, u|ψ) =
(Pij(t, u|ψ))8×8 is governed by

dP (t, u|ψ)

du
= P (t, u|ψ)Λ[ψ](t), 0 ≤ t ≤ u,
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with
P (t, t|ψ) = I.

The individual transition probability Pij(t, s|ψ) satisfies the following system of ODE:

dPij(t, u|ψ)

du
=

8∑
k=1

Pik(t, u|ψ) ∧kj (t|ψ), 0 ≤ t ≤ u,

with

Pij(t, t|ψ) =

{
1, i = j,
0, i ̸= j.

Since Λ[ψ](t) is upper triangular, individual transition probability Pij(t, u|ψ) can be solved successively
in a sequential manner. Then, applying the expectation operator Eψ[.], which is the expectation taken
over the path of (X,L0

t , L
1
t , · · · , Lmt )0<t≤T , we can obtain the transition probability Pij(t, u). Once

these transition probabilities are available, the marginal distributions and the joint distribution of the
default times can be derived.

For example, the conditional transition probability from state 1 to state 1, denote by p11, can be
obtained by solving the equation

dP11(t, u|ψ)

du
= −P11(t, u|ψ)

m∑
k=1

λkv(1 −
2∏
l=0

pkl),

with the boundary condition P11(t, t|ψ) = 1. The solution to the above equation is given by

P11(t, u|ψ) = e
−
∫ u

t

m∑
k=1

λk
v(1−

2∏
l=0

pkl)dv

.

Therefore,

P (τ1 ∧ τ2 ∧ τ3 > t) = P11(0, t) = E

e−
∫ t

0

m∑
k=1

λk
v(1−

2∏
l=0

pkl)dv

 .

Based on the connection between the dynamic Markov model (ψ,H) and a common shock model,
explicit formulas for the conditional and unconditional transition probabilities can be derived. Here,
we omit the details of these formulas.

5. CDS and the first-to-default basket swap on three underlyings

In this section, we compute the fair spreads of a single-name credit default swap with and without
the counterparty risk and the first-to-default basket swap on three underlyings when Lit is modeled
by (2.4) for i = 0, 1, · · · ,m.

5.1. Single-name credit default swap

In this subsection, we consider the impact of default risk of the protection seller on the spreads of
a CDS. Specifically, we compute the fair credit default swap premium with and without default risk
of the protection seller and the investor.

For simplicity, let the face value of the CDS be a monetary unit. It is assumed that the spread is
paid continuously in time. Let T be the maturity date of the CDS, κ be the fair spread rate of a CDS
contract without the default risk of the protection seller and the protection buyer, and κ1 be the fair
spread rate of a CDS contract with counterparty risk. Furthermore, if the protection seller defaults,
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then the protection buyer gets nothing. In the literature, much research has been carried out to study
the impact of counterparty risk on CDS valuation. In this paper, the impact on the CDS spread rate
in the presence of the counterparty risk measured by κ1−κ, has also been studied in Leung and Kwok
[21].

We first describe the cash flows of a CDS without counterparty. For the default leg, the protection
seller covers the credit losses 1 − R1 as soon as the reference entity has defaulted. For the premium
leg, the protection buyer pays κ to the seller continuously until maturity or until the reference entity
defaults before maturity. Then, the fair spread of the CDS without counterparty risk is determined
so that the discounted payoff of the two legs are equal when the contract is initiated at time 0. That
is, the spread κ should satisfy

κ

∫ T

0

E
[
1{τ1>u}D(0, u)

]
du = (1 −R1)E

[
D(0, τ1)1{τ1≤T}

]
.

Hence,

κ =
(1 −R1)E

[
D(0, τ1)1{τ1≤T}

]∫ T
0
E
[
1{τ1>u}D(0, u)

]
du

. (5.1)

We now turn to the cash flows of a CDS with counterparty risk. For the default leg, if the reference
entity defaults first before maturity, or the reference and the investor default simultaneously before
maturity while the protection seller still survives, then the protection seller covers the credit losses
1−R1. For simplicity, we assume that if the protection seller or the buyer defaults first before maturity,
then the protection buyer gets nothing. For the premium leg, the protection buyer pays κ1 to the
seller continuously until maturity or until any of names 0, 1, 2 defaults before maturity. Again, the
fair spread of the CDS with counterparty risk is determined so that the discounted payoff of the two
legs are equal when the contract is initiated at time 0. So, the spread κ1 should satisfy

κ1

∫ T

0

E
[
1{τ0∧τ1∧τ2>u}D(0, u)

]
du = (1 −R1)E

[
D(0, τ1)(1{τ1≤T,τ1<τ2∧τ0} + 1{τ1≤T,τ1=τ0<τ2}

]
.

So,

κ1 =
(1 −R1)E

[
D(0, τ1)(1{τ1≤T,τ1<τ2∧τ0} + 1{τ1≤T,τ1=τ0<τ2}

]∫ T
0
E
[
1{τ0∧τ1∧τ2>u}D(0, u)

]
du

. (5.2)

Proposition 5.1. Let c1 = (c01, c
1
1, · · · , cm1 )∗, with c01 = 1 and ci1 = pi1 for each i = 1, · · · ,m. Then,

the fair CDS premium without counterparty risk is given by

κ =

(1 −R1)
∫ T
0
e
−(r0+

m∑
k=1

λk
0pk1)u m∑

k=1

pk1⟨λk0Ψ1(c1,0, 0, u) − Ψk
2(c1,0, 0, u), X0⟩du

∫ T
0
e
−(r0+

m∑
k=1

pk1λk
0 )t

⟨Ψ1(c1,0, 0, t), X0⟩dt

, (5.3)

where

Ψ1(c1,0, 0, u) = lim
d0,···,dm→0

Ψ1(c1,d, 0, u), Ψk
2(c1,0, 0, u) = lim

d0,···,dm→0

∂Ψ1(c1,d, 0, u)

∂dk
,

with Ψ1(c1,d, 0, u) determined by (3.2).

Proof. The expected present value of the contingent payment paid by the protection seller from 0
to T is given by

(1 −R1)E
[
D(0, τ1)1{τ1≤T}

]
= (1 −R1)E

[∫ T

0

D(0, u)1{τ1>u−}dH
1
u

]
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= (1 −R1)E

∫ T

0

e
−
∫ u

0
(rv+

m∑
k=1

λk
vpk1)dv m∑

k=1

λkupk1du


= (1 −R1)

∫ T

0

e
−(r0+

m∑
k=1

λk
0pk1)u m∑

k=1

(λk0 + Lku)pk1E

e−
∫ u

0
(L0

v+

m∑
k=1

Lk
vpk1)dv

 du
= (1 −R1)

∫ T

0

e
−(r0+

m∑
k=1

λk
0pk1)u m∑

k=1

pk1⟨λk0Ψ1(c1,0, 0, u) − Ψk
2(c1,0, 0, u), X0⟩du,

where the second equality is due to Lemma 2.1 and the fact that H1
t −

∫ t
0

1{τ1>u}q1(u)du is an {ℑt}-
martingale, and the last equality follows from Theorem 3.1 and Corollary 3.1.

The total expected present value of the premium payment from 0 to T is

κ

∫ T

0

E
[
1{τ1>u}D(0, u)

]
du = κ

∫ T

0

E

e−
∫ u

0
(rv+

m∑
k=1

λk
vpk1)dv

 du
= κ

∫ T

0

e
−(r0+

m∑
i=1

pi1λ
i
0)t

⟨Ψ1(c1,0, 0, t), X0⟩dt,

where the first equality is obtained using Lemma 2.1, and the last equality follows from Theorem 3.1.

Finally, substituting the above expressions into (5.1) yields the result.

Proposition 5.2. Let c2 = (c02, c
1
2, · · · , cm2 )∗, with c02 = 1 and ci2 = 1−

∏2
l=0 pil for each i = 1, · · · ,m.

Then the fair CDS premium with counterparty risk is given by

κ1 =

(1 −R1)
∫ T
0
e
−(r0+

m∑
i=1

ci2λ
i
0)t m∑

k=1

pk1pk2⟨λk0Ψ1(c2,0, 0, u) − Ψk
2(c2,0, 0, t), X0⟩dt

∫ T
0
e
−(r0+

m∑
k=1

ck2λ
k
0 )t

⟨Ψ1(c2,0, 0, t), X0⟩dt

, (5.4)

where

Ψ1(c2,0, 0, u) = lim
d0,···,dm→0

Ψ1(c2,d, 0, u), Ψk
2(c2,0, 0, u) = lim

d0,···,dm→0

Ψ1(c1,d, 0, u)

∂dk
,

with Ψ1(c2,d, 0, u) determined by (3.2).

Proof. Let τ = min
s∈S

τs. Then, by using Lemma 2.2, the expected present value of the contingent

payment paid by the protection seller from 0 to T is given by

(1 −R1)(E
[
D(0, τ{1})1{τ=τ{1}≤T}

]
+ E

[
D(0, τ{0,1})1{τ=τ{0,1}≤T}

]
)

= (1 −R1)

∫ T

0

E

e−
∫ u

0
(rv+

m∑
k=1

λk
v(1−

2∏
l=0

pkl))dv m∑
k=1

λkupk1pk2

 du

= (1 −R1)

∫ T

0

e
−(r0+

m∑
i=1

(1−
2∏

l=0

pil)λ
i
0)t m∑

k=1

pk1pk2⟨λk0Ψ1(c2,0, 0, t) − Ψk
2(c2,0, 0, t), X0⟩dt,

where the last equality follows from Theorem 3.1 and Corollary 3.1.
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The total expected present value of the premium payment from 0 to T is

κ1

∫ T

0

E
[
1{τ>u}D(0, u)

]
du = κ1

∫ T

0

E

e−
∫ u

0
(rv+

m∑
k=1

λk
v(1−

2∏
l=0

pkl)dv

 du

= κ1

∫ T

0

e
−(r0+

m∑
i=1

(1−
2∏

l=0

pil)λ
i
0)t

⟨Ψ1(c2,0, 0, t), X0⟩dt,

where the first equality holds because τ has the ℑ-intensity
∑m
k=1 λ

k
v(1 −

∏2
l=0 pkl), and the last

equality follows from Theorem 3.1.

Finally, substituting the above expressions into (5.2) yields the formula for the spread κ1.

5.2. First-to-default basket swap on three underlyings

A kth-to-default basket swap, which is a commonly traded product of portfolio credit derivatives,
is a bilateral contract between an insurance buyer and an insurance seller. The payment streams
of this derivative depend on the default times of an underlying portfolio of n credit-risky assets. In
this paper, we consider the first-to-default swap on three underlyings with maturity T . Assume that
the default dependence structure of the three underlyings is the same as that of the investor, the
reference entity, and the protection seller defined in the previous sections. Consider a unit notional
and a constant recovery R. Let τ = τ0 ∧ τ1 ∧ τ2. In order to cover the loss when a credit event occurs,
the buyer of protection pays a continuous premium (also called spread) till the first default occurs or
till the maturity time T of the contract if no default occurs before the maturity. Therefore, the fair
spread of the first-to-default swap c should satisfy

cE

[∫ T

0

e
−
∫ t

0
rsds1{τ>t}dt

]
= (1 −R)E

[
e
−
∫ τ

0
rsds1{τ≤T}

]
. (5.5)

From (5.5), we have the following result.

Proposition 5.3. The fair spread of the first-to-default swap on the three underlyings is given by

c =

(1 −R)
∫ T
0
e
−(r0+

m∑
k=1

ck2λ
k
0 )t m∑

k=1

ck2⟨λk0Ψ1(c2,0, 0, t) − Ψk
2(c2,0, 0, t), X0⟩dt

∫ T
0
e
−(r0+

m∑
k=1

ck2λ
k
0 )t

⟨Ψ1(c2,0, 0, t), X0⟩dt

, (5.6)

where c2,Ψ1(c2,0, 0, t), and Ψk
2(c2,0, 0, t) are defined in Proposition 5.2.

Proof. Similar to the proof of Proposition 5.2, the left side of (5.5) is given by

c

∫ T

0

E

[
e
−
∫ t

0
rsds1{τ>t}

]
dt = c

∫ T

0

e
−(r0+

m∑
i=1

(1−
2∏

l=0

pil)λ
i
0)t

⟨Ψ1(c2,0, 0, t), X0⟩dt.

The right side of (5.5) can be expressed as

(1 −R)E

[
e
−
∫ τ

0
rudu1{τ≤T}

]
= (1 −R)E

[∑
s∈S

e
−
∫ τs

0
rudu1{τ=τs≤T}

]

= (1 −R)

∫ T

0

E

e−
∫ u

0
(rv+

m∑
k=1

λk
v(1−

2∏
l=0

pkl))dv m∑
k=1

λku(1 −
2∏
i=0

pki(u))

 du
14



= (1 −R)

∫ T

0

e
−(r0+

m∑
i=1

ci2λ
i
0)t m∑

k=1

ck2⟨λk0Ψ1(c2,0, 0, t) − Ψk
2(c2,0, 0, t), X0⟩dt.

Equating the above two equalities ends the proof.

6. Numerical results

In this section, we carry out a numerical study to examine the impact of some model parameters
on the spreads of the CDS. Since the semi-analytic formulas for the spreads of the CDS have been
obtained, we can calibrate the proposed model according to the structure of market data. Giesecke et
al. [17] suggest there exist three regimes and obtain the transitional probability by making analysis
on the corporate bond market over the course of the last 150 years. Therefore, the generator of the
Markov chain can be borrowed from Giesecke et al. [17]. The groups of the shock events can be set
as the cardinality of the set S. Thus, the parameters η = (r0,λ

i
0, pij ,µi, f

i) for i = 1, · · · ,m and
j = 0, 1, 2 can be obtained according to

η = argmin
η̂

∑
T∈{T1,···,Tk}

(κ(T, η̂) − κ(T ))2

κ(T )2
,

where T1, · · · , Tk are different maturities.

Since there are much more parameters to be estimated, we will work on the numerical calibrations
in the future’s research. In this section, we mainly perform a numerical analysis for CDS valuation.
Following Giesecke et al. [17], we consider N = 3, that is, X has three states, where state e1,
state e2, and state e3 represent a “good” economy, a “moderate” economy, and a “bad” economy,
respectively. Also, the generator of the Markov chain can be borrowed from Giesecke et al. [17]. Let
m = 4, R1 = R = 0.4, T = 5, r = (0.05, 0.03, 0.01)∗, p1i = 0.1, i = 0, 1, 2, p20 = 0.1, p31 = 0.1,
p42 = 0.1, p21 = p22 = p30 = p32 = p40 = p41 = 0, λ1

0 = (0.01, 0.03, 0.05)∗, λ2
0 = (0.015, 0.045, 0.075)∗,

λ3
0 = (0.025, 0.075, 0.125)∗, λ4

0 = (0.02, 0.06, 0.1)∗, and µk = (1, 3, 5)∗ for k = 1, 2, 3, 4. For each
k = 0, 1, 2, 3, 4, fk is given by  fk1(x) = 20e−20x, x > 0,

fk2(x) = 10e−10x, x > 0,
fk3(x) = 2e−2x, x > 0.

Set q12 = q21 = q23 = q32 = q13 = q31 = q. To perform the numerical analysis, we use the fourth-order
Runge-Kutta algorithm to solve (3.2) and use Simpson’s 1/3 rule to calculate the integrations.
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Figure 1: impact of q on κ for different ai

and X0,µ0 = (1, 3, 5)∗
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Figure 2: impact of q on κ for different µ0

and X0, a
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Figure 3: impact of q on κ1 for different ai

and X0, µ0 = (1, 3, 5)∗
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Figure 4: impact of q on κ1 for different µ0

and X0, a
i = 50

Figures 1-2 present the impact of q on the CDS spread without counterparty risk. In these figures,
we see that the spread in the case with the “good” economy at time t = 0 is much lower. We also
see that a larger q results in a larger spread if X0 = e1 or X0 = e2. This is because the probability of
switching to a worse economy increases as q increases. On the other hand, if we start at the “bad”
economy, the spreads decrease as q increases. This is mainly due to the increasing probability of
switching to a better economy. In Figure 1, we observe that the impact of the parameter ai on the
spread κ is very obvious with a larger ai corresponding to a lower spread. This may be explained
by the fact that the time period that the intensity λi goes back to the previous level of intensity
immediately after major events occur will be shorten as ai increases. In Figure 2, we see that the
spread increases with µ0 with other parameters being fixed. Since an increase in µ0 leads to a higher
frequency that the intensities jump upward, the default probability for name 1 increases.

Figures 3-4 present the impact of q on the CDS spread with counterparty risk. The curves in Figures
3-4 are similar to those in Figures 1-2. Figures 1-4 indicate that the spread with counterparty risk is
lower than the one without counterparty risk. This is consistent with the financial intuition.
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Figure 5: impact of q on κ−κ1 for different
ai and X0, µ0 = (1, 3, 5)∗
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Figure 6: impact of q on κ−κ1 for different
µ0 and X0, a

i = 50

Figures 5-6 present the impact of q on the CDS spread difference κ − κ1. For a fixed ai, Figure 5
shows that the difference increases with q when X0 = e1 or X0 = e2, while it decreases with q when
X0 = e3. We also see that a larger κ − κ1 corresponds to a smaller ai. In Figure 6, we observe that
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and X0,µ0 = (1, 3, 5)∗
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Figure 8: impact of q on c for different µ0

and X0, a
i = 50

the impact of the parameter µ0 on κ− κ1 is very obvious, and that the difference increases with µ0.

Figures 7-8 present the impact of q on the spread of the first-to-default basket swap on the three
underlyings. The curves in Figures 7-8 are similar to those in Figures 1-4. Comparing Figures 7-8
with Figures 1-4, we see that the spread of the first-to-default basket swap is much higher than the
single-name CDS spread. This is in line with the stylized feature: the first-to-default swap spread
written on a portfolio of n reference names increases with n.

7. Concluding remarks

In this paper, we use an intensity-based framework to analyze a CDS contract with counterparty
credit risk. The proposed model is based on the idea that a firm’s default is driven by idiosyncratic
as well as other regional, sectoral, industry, or economy-wide shocks, whose arrivals are modeled
by a multivariate regime-switching shot noise process. The regime-switching shot noise process can
measure the impact on the intensities of major events well and allows us to obtain the joint Laplace
transform of the regime-switching shot noise processes and the integrated regime-switching shot noise
processes. Based on these formulas, we can calculate the CDS spread and the first-to-default swap
spread.

The present work might be extended in at least two directions. A possible extension is that one can
consider a contagion model with regime-switching shot noise intensities. Another possible extension
is that the jump component J it in the intensities can be replaced by a more general process such as a
Lévy subordinator with regime switching.
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